Magnetic topology during the reconnection process in a kinked coronal loop
نویسنده
چکیده
The magnetic topology change that arises during the evolution of the kink instability in a solar coronal loop is studied using a three-dimensional MHD simulation in cylindrical geometry. The initial structure is an axisymmetric twisted magnetic flux tube carrying a vanishing axial electric current, that has primarily evolved towards a kinked configuration containing an intense current concentration along the loop. Consequently, the ensuing evolution becomes resistive allowing a stationnary reconnection process to occur (Baty 2000). The system finally reaches a relaxed configuration of lower magnetic energy with three topologically distinct regions. Indeed, the original highly twisted central region is transformed into two interwoven flux tubes with field lines having a small amount of twist within each tube. This first region is surrounded by a weakly non axisymmetric annular flux tube that is embedded into the original potential magnetic field. Using mappings of field lines along the loop from one photospheric end, we draw a schematic description of the magnetic topology change in terms of the initial distributions of the twist and/or of the axial current density.
منابع مشابه
Magnetic reconnection in kinked coronal loops
The resistive dissipation process triggered by the non linear development of the kink instability in a coronal loop is investigated using a three-dimensional MHD code in cylindrical geometry. An equilibrium flux tube carrying a zero net axial current is considered. The magnetic field lines are locally twisted in the central region and inertially anchored at the two photospheric end-plates. When...
متن کاملGeneration of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملبررسی شتابدهی ذرات باردار از طریق بازاتصالی مغناطیسی در محیطهای پلاسمایی
Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...
متن کاملFast Collisionless Reconnection Condition and Self-organization of Solar Coronal Heating
I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet– Parker regime and the fast collisionless reconnection regime. This transition takes pl...
متن کاملThe Magnetic Topology of Coronal Mass Ejection Sources
In an attempt to test current initiation models of coronal mass ejections (CMEs), with an emphasis on the magnetic breakout model, we inspect the magnetic topology of the sources of 26 CME events in the context of their chromospheric and coronal response in an interval of approximately nine hours around the eruption onset. First, we perform current-free (potential) extrapolations of photospheri...
متن کامل